# TWO NEW TRITERPENOIDS FROM RHODOMYRTUS TOMENTOSA

WAI-HAAN HUI and MAN-MOON LI Department of Chemistry, University of Hong Kong, Hong Kong

(Received 30 April 1976)

**Key Word Index**—*Rhodomyrtus tomentosa*; Myrtaceae; triterpenoids;  $3\beta$ -hydroxy-21 $\alpha$ H-hop-22(29)-en-30-al;  $21\alpha$ H-hop-22(29)-en-3 $\beta$ ,30-diol;  $3\beta$ -acetoxy-11 $\alpha$ ,12 $\alpha$ -epoxyoleanan-28,13 $\beta$ -olide;  $3\beta$ -acetoxy-12 $\alpha$ -hydroxyoleanan-28,13 $\beta$ -olide; triterpenoid acids.

Abstract—Repetition of an investigation of the petrol extracts of *Rhodomyrtus tomentosa* has led to the isolation of two new triterpenoids,  $R_4$  from the leaves and  $R_5$  from the stems besides  $R_1$ ,  $R_2$ ,  $R_3$  and the other known compounds already reported.  $R_1$  and  $R_4$  were proved to be  $21\alpha H$ -hop-22(29)-en-3 $\beta$ ,30-diol and  $3\beta$ -hydroxy- $21\alpha H$ -hop-22(29)-en-30-al respectively, and  $R_2$ ,  $R_3$  and  $R_5$  are  $3\beta$ -acetoxy- $11\alpha$ ,12 $\alpha$ -epoxyoleanan-28,13 $\beta$ -olide,  $3\beta$ -acetoxy- $12\alpha$ -hydroxyoleanan-28,13 $\beta$ -olide and  $3\beta$ -acetoxy- $12\alpha$ -hydroxyoleanan-28,13 $\beta$ -olide respectively. The ethanol extract of the leaves contained betulinic, ursolic and aliphitolic acids and that of the stems betulonic, betulinic and oleanolic acids.

### INTRODUCTION

The petrol extracts of the leaves and stems of *Rhodomyrtus tomentosa* have been examined in this laboratory [1]. Lupeol,  $\beta$ -amyrin,  $3\beta$ -hydroxyolean-12-en-11-one, betulin and an unidentified diol  $R_1$  ( $C_{30}H_{50}O_2$ ) were isolated from the former, and friedelin, lupeol,  $\alpha$ -amyrin, taraxerol, betulin-3-acetate, betulin and two lactones,  $R_2$  ( $C_{32}H_{48}O_5$ ) and  $R_3$  ( $C_{32}H_{50}O_5$ ) from the latter. On repetition of the examination in order to obtain larger quantities of  $R_1$ ,  $R_2$  and  $R_3$  for structural work, two other triterpenoids have now been isolated,  $R_4$  ( $C_{30}H_{48}O_2$ ) from the leaves and  $R_5$  ( $C_{32}H_{48}O_5$ ) from the stems. We describe here the structure determinations of these five compounds. The acidic triterpenoids from this plant are also reported.

## RESULTS AND DISCUSSION

The diol R<sub>1</sub> (1), C<sub>30</sub>H<sub>50</sub>O<sub>2</sub> (M<sup>+</sup>, m/e 442) [1] formed a diacetate (2), C<sub>34</sub>H<sub>54</sub>O<sub>4</sub> (M<sup>+</sup>, m/e 526). Compound 1 contained a free rotating CH<sub>2</sub>OH group [NMR:  $\delta$  4.12 (2 H, broad s) shifted to  $\delta$  4.67 in that of 2]. Both 1 and 2 possessed a C=CH<sub>2</sub> group [ $\delta$  4.92 (2 H, broad s)], the low field character of which could be explained by the partial structure CH<sub>2</sub>=C-CH<sub>2</sub>OR (R=H or Ac) which was also indicated in the IR spectra of both compounds at  $\nu_{\rm max}$  1650, 915 cm<sup>-1</sup> [2]. The second OH group in 1 appeared to be secondary [ $\delta$  3.19 (1 H, m)].

group in 1 appeared to be secondary [ $\delta$  3.19 (1 H, m)]. Compound R<sub>4</sub> (3), C<sub>30</sub>H<sub>48</sub>O<sub>2</sub> (M<sup>+</sup>, m/e 440), which was less polar than 1, contained an OH function ( $\gamma_{\text{max}}$  3320 cm<sup>-1</sup>), which was secondary and equatorial [ $\delta$  3.19 (1 H, q, J=7 and 10 Hz)], and a CH<sub>2</sub>=C-CHO group [ $\nu_{\text{max}}$  2845, 2720, 1690, 1630 cm<sup>-1</sup>,  $\delta$  5.90, 6.30 (1 H ea., both  $\sim s$ ),  $\delta$  9.68 (1 H, s);  $\lambda_{\text{max}}$  228 nm ( $\epsilon$ 9700)]. It formed a monoacetate (4), C<sub>32</sub>H<sub>50</sub>O<sub>3</sub>, and the presence of its terminal double bond was confirmed by the formation of formaldehyde upon ozonolysis.

Oxidation of the allyllic OH function in 1 with MnO<sub>2</sub> yielded a conjugated aldehyde identical with 3, while

reduction of 3 with NaBH<sub>4</sub> gave the diol 1. Thus the two compounds are inter-related.

The presence of a substituted isopropenyl group together with 6 tertiary Me signals indicated in the NMR spectra of the compounds 1-4 suggested either a hop-22(29)-ene or a lup-20(29)-ene skeleton. The former was proved to be correct by Wolff-Kishner reduction of 3, which yielded moretenol ( $21\alpha H$ -hop-22(29)-en-30-al and 1 is the corresponding 30-hydroxy compound. These structures were further confirmed by partial syntheses from moretenyl acetate (6) through oxidation with SeO<sub>2</sub> and Pb(OAc)<sub>4</sub> separately in glacial acetic acid which gave the acetates 4 and 2 respectively. Alkaline hydrolysis of the former yielded 3 and of the latter gave 1.

The 6 tertiary methyl NMR signals of compounds 1-4 are assigned as shown in Table 1.

Compound 3 appears to be the third naturally occurring pentacyclic triterpenoid containing a conjugated aldehyde function. The other two are 3-acetoxyurs-20-en-al from Stemmadenia donell-smithii [3] and filic-3-

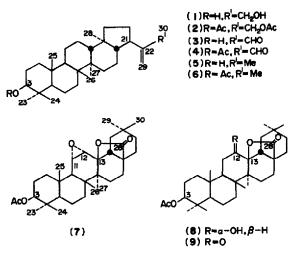



Table 1. NMR spectra of the triterpenoids from Rhodomyrtus tomentosa

| Compound   | C-23 | C-24 | C-25 | C-26 | C-27 | C-28 |
|------------|------|------|------|------|------|------|
| (1)        | 0.96 | 0.76 | 0.83 | 1.01 | 0.93 | 0.74 |
| (1)<br>(2) | 0.83 | 0.83 | 0.83 | 1.01 | 0.92 | 0.76 |
| (3)        | 0.97 | 0.76 | 0.82 | 1.01 | 0.93 | 0.82 |
| (4)        | 0.85 | 0.85 | 0.85 | 1.02 | 0.92 | 0.79 |

Table 2. NMR spectra of the triterpenoids derived from Rhodomyrtus tomentosa

| Compound | C-23 | C-24 | C-25 | C-26 | C-27 | C-29 | C-30 |
|----------|------|------|------|------|------|------|------|
| (7)      | 0.88 | 0.88 | 0.93 | 1.04 | 1.07 | 0.88 | 0.92 |
| (8)      | 0.87 | 0.87 |      | 0.95 | 1.30 | 0.95 | 0.95 |
| (9)      | 0.87 | 0.87 |      | 1.14 | 1.30 | 0.90 | 0.90 |

en-23-al from Adiatum pedatum [4]. However, such a function in the substituted isopropenyl side chain in triterpenoids has not been reported previously.

The two compounds previously obtained from the stems,  $R_2$  (7) and  $R_3$  (8), both contained an acetoxy group and a  $\gamma$ -lactone ring, and the latter also had an OH function [1]. The third related compound  $R_5$  (9),  $C_{32}H_{48}O_5$  (M<sup>+</sup> 512), mp 287–289°, which was between 7 and 8 in polarity, similarly contained an acetoxy group ( $\nu_{\text{max}}1740$ , 1247 cm<sup>-1</sup>) and a  $\gamma$ -lactone ring ( $\nu_{\text{max}}1775$ , 1175 cm<sup>-1</sup>). A carbonyl function ( $\nu_{\text{max}}1720$  cm<sup>-1</sup>), which was not found in either 7 or 8, was also present.

The NMR spectra of compounds 7-9 each showed 7 tertiary methyl signals; an equatorial secondary OCOMe group in the environment  $CH_2C\underline{H}OCOC\underline{H}_3$  [ $\delta$  2.04 (3 H, s) and 4.50 (1 H, q, J=7 and 9 Hz)]. That of 8 also revealed a  $CH_2CHOH$  group in which the OH function was axially orientated [ $\delta$  3.88 (1 H, t, J=2 and 3 Hz)], and that of 9 a  $CH_2CO$  group [ $\delta$  2.50 (2 H, m)]. That compound 9 was the corresponding ketone of the alcohol 8 was proved by oxidation of 8 with Jones' reagent, which yielded a carbonyl compound, identical with 9.

The fifth oxygen atom in 7 appeared as an  $\alpha,\beta$ -disubstituted epoxy function  $[\nu_{\text{max}} 875 \,\text{cm}^{-1}, \delta 3.00 \,(2 \,\text{H}, \sim s)]$ , as on acid treatment, it yielded not an aldehyde, but a ketone identical with 9. The chemical shifts of the two epoxide protons agreed well with that reported for  $11\alpha$ ,  $12\alpha$ -epoxy-28,  $13\beta$ -olides of oleanane triterpenoids [5]. Assuming the acetate function to be in the usual C-3 position, 7 was probably  $3\beta$ -acetoxy- $11\alpha$ , $12\alpha$ -epoxyoleanan-28,13β-olide, 8 was the corresponding 12α-hydroxy compound and 9 was the 12-oxo compound. These three compounds have never been isolated as natural products, however, Barton et al. [6] and Yosioka et al.[7] have both prepared the 12\alpha-hydroxy compound and the latter also synthesized 7 and 9. Compounds 7 and 8 were proved to be identical with authentic samples of the epoxide and 12α-hydroxy compound respectively kindly supplied by Professor Yosioka. Following Barton's method of reacting acetyl oleanolic acid with m-chloroperbenzoic acid, we also obtained a sample of the alcohol, identical with 7.

The 7 tertiary methyl NMR signals of compounds 7-9 are assigned as shown in Table 2.

After extraction with petrol, both the leaves and stems were subsequently extracted with EtOH. These extracts each gave an acidic fraction, which was methylated and

chromatographed on alumina. That from the leaves gave methyl betulinate, ursolate and aliphitolate (methyl  $2\alpha,3\beta$ -dihydroxy-lup-20(29)-en-28-oate), while that from the stems gave methyl betulonate, betulinate and oleanolate.

Rhodomyrtus tomentosa is the only species of the genus Rhodomyrtus identified in Hong Kong, and other Rhodomyrtus species do not appear to have been examined for triterpenoids and steroids. However, with the isolation of 18 different triterpenoids and 3 steroids [1] from a single species, it shows further work of this kind on other species of this genus is worthwhile.

#### **EXPERIMENTAL**

IR spectra were recorded for KBr discs, UV spectra in 95% EtOH, NMR spectra in CDCl<sub>3</sub> were determined at 60 MHz using TMS as internal standard, and optical rotations in CHCl<sub>3</sub>. Petrol had bp 60–80°. Known compounds were identified by TLC, mmp and IR spectral comparisons with authentic samples.

Neutral compounds from leaves. Milled air-dried leaves (44 kg) were extracted  $2 \times$  with petrol. The combined extracts were cone and chromatographed on Al<sub>2</sub>O<sub>3</sub> (4 kg). Elution with petrol and petrol-C<sub>6</sub>H<sub>6</sub> (1:1) gave the same compounds in the early fractions as reported previously [1], but gave before betulin, fine needles of (3) (0.08 g). mp 243-246° (from petrol);  $[\alpha]_D + 10.7^\circ$ . (Found: C, 81.7; H, 11.15. C<sub>30</sub>H<sub>48</sub>O<sub>2</sub> requires: C, 81.8; H, 11.0%) It formed a monoacetate (4), mp 227-229° (from petrol-CHCl<sub>3</sub>);  $[\alpha]_D + 32.8$  (Found: M<sup>+</sup> 482. C<sub>32</sub>H<sub>50</sub>O<sub>3</sub> requires: M<sup>+</sup> 482);  $v_{max}$  (cm<sup>-1</sup>): 2825, 2720, 1690, 1630 (CH<sub>2</sub>=C-CHO), 1740, 1250 (OAc); NMR:  $\delta$  2.02 (3 H, s, OCOMe), 4.47(1 H, q, J = 7 and 10 Hz, axial CH<sub>2</sub>CHO-COMe, 6.23, 5.90, 9.42 (1 H ea, s, CH<sub>2</sub>=C-CHO). Elution with C<sub>6</sub>H<sub>6</sub>-CHCl<sub>3</sub> (1:1) afforded needles of (1) (0.01 g), mp 253-254° (formerly reported as 237-239° [1]);  $[\alpha]_D + 6.5^\circ$ . (Found: C, 81.3; H, 11.5; C<sub>30</sub>H<sub>50</sub>O<sub>2</sub> requires: C, 81.4, H, 11.4%) It formed a diacetate (2), mp 197-199° (from aq. MeOH); (Found: M<sup>+</sup> 526, C<sub>34</sub>H<sub>54</sub>O<sub>4</sub> requires: M<sup>+</sup> 526);  $v_{max}$  (cm<sup>-1</sup>): 1745, 1245 (OAc), 1650, 915 (CH<sub>2</sub>=C-CH<sub>2</sub>O).

 $MnO_2$  oxidation of 1. Compound 1 (0.03 g) was shaken with MnO<sub>2</sub> (0.1 g) in CHCl<sub>3</sub> (25 ml) for 3 days. The product was recrystallized from petrol to give needles (0.02 g), mp 244–246°;  $\nu_{\rm max}$  (cm<sup>-1</sup>): 3320, 2845, 2720, 1690, 1630, identical with 3.

 $NaBH_4$  reduction of 3. Compound 3 (15 mg) was refluxed with NaBH<sub>4</sub> (0.1 g) in THF (20 ml) for 2 hr. The product was recrystallized from MeOH to give needles (11 mg), mp 252–254°;  $v_{\rm max}$  (cm<sup>-1</sup>): 3330, 1650, 915, identical with 1.

Wolff-Kishner reduction of 3. A soln of 3 (35 mg), NaOH (0.2 g) and hydrazine hydrate (0.2 ml) in diethylene glycol (30 ml) was heated at 120° for 1 hr, then at 210° for 6 hr. The product was purified by PLC to give needles, mp 235–237° (from petrol);  $[\alpha]_D + 25.0^\circ$ ; M<sup>+</sup> 426;  $\nu_{\text{max}}$  (cm<sup>-1</sup>) 3500 (OH), 3080, 1650, 885 (C=CH<sub>2</sub>); forming an acetate, mp 282–284°, identical with moretenol (5), and its acetate (6) respectively.

Partial synthesis of 1. Moretenyl acetate (6) (0.1 g) was heated with Pb(OAc)<sub>4</sub> (0.1 g) in HOAc (25 ml) on the steam bath for 4 hr. The product was extracted in Et<sub>2</sub>O, dried and chromatographed on Al<sub>2</sub>O<sub>3</sub> (15 g) in petrol to give first unreacted (6) (0.06 g), then fine needles (13 mg), mp 198–200° (from CHCl<sub>3</sub>-MeOH); M<sup>+</sup> 526;  $\nu_{max}$  (cm<sup>-1</sup>): 1745, 1245, 1650, 915, identical with 2, which on hydrolysis with 5% methanolic KOH (30 ml) gave needles, mp 253–254°, identical with 1.

Partial synthesis of 3. Moretenyl acetate (6) (0.1 g) was refluxed with SeO<sub>2</sub> (0.5 g) in HOAc (25 ml) for 4 hr. The product was extracted in Et<sub>2</sub>O and characteristic food on Al<sub>2</sub>O<sub>3</sub> (10 g) in petrol to give unchanged 6 (100 g), there needles (15 mg), mp 225–228°; M<sup>+</sup> 482;  $\nu_{\rm max}$  (cm<sup>-1</sup>): 3320, 2845, 2720, 1690, 1630, identical with 4, which on hydrolysis with 5% methanolic KOH (30 ml) gave a product, mp 242–244°, identical with 3.

Acidic compounds from leaves. The leaves, after extraction with petrol, were extracted  $2\times$  with 95% EtOH. The combined extracts were distilled to give a dry residue, which was thoroughly extracted with Et<sub>2</sub>O. The combined extracts were repeatedly shaken with NaOH soln (1 M). The aq. layers on acidification gave a solid mixture (20 g) which was methylated with CH<sub>2</sub>N<sub>2</sub> in Et<sub>2</sub>O and chromatographed on Al<sub>2</sub>O<sub>3</sub> (500 g) in petrol. Elution with petrol-C<sub>6</sub>H<sub>6</sub> (1:1) gave prisms of methyl betulinate (0.2 g), mp 228-230° (from CHCl<sub>3</sub>);  $[\alpha]_D + 7.0^\circ$ ;  $M^+ 470$ ,  $\nu_{max}$  (cm<sup>-1</sup>): 3550 (OH), 1720, 1174 (COOMe), 3080, 1650, 880 (C=CH<sub>2</sub>), then methyl ursolate (0.1 g), mp 168-170°;  $[\alpha]_D + 63.0^\circ$ ;  $M^+ 470$ ;  $\nu_{max}$  (cm<sup>-1</sup>): 3350 (OH), 1740, 1200 (COOMe), 1640, 820 (C=CH). Elution with CHCl<sub>3</sub> afforded needles (0.1 g) of methyl aliphitolate, mp 234-236° (from CHCl<sub>3</sub>-MeOH);  $M^+ 486$ ;  $\nu_{max}$  (cm<sup>-1</sup>): 3300 (OH), 1740, 1160 (COOMe), 3080, 1650, 885 (C=CH<sub>2</sub>). It formed a diacetate, mp 231-232° (from MeOH);  $[\alpha]_D - 14.0^\circ$ ;  $M^+ 570$ ;  $\nu_{max}$  (cm<sup>-1</sup>): 1750, 1250 (OAc), 1730, 1160 (COOMe), 3080, 1650, 885 (C=CH<sub>2</sub>), identical with an authentic sample of methyl aliphitolate diacetate.

Neutral compounds from stems. Air-dried stems (61 kg) were extracted with petrol and the extract chromatographed on  $Al_2O_3$  (3 kg) as for the leaf extract. Elution with  $C_6H_6$  gave before betulin, as reported previously [1], compound 7 (0.05 g), mp 329–331°;  $[\alpha]_D$  +45.3°, and after betulin, compound 9 (0.03 g), mp 287–289°;  $[\alpha]_D$  +3.8°; (Found: M<sup>+</sup> 512. Calc. for  $C_{32}H_{48}O_5$ : M<sup>+</sup> 512), followed by compound 8 (0.01 g), mp 284–286°;  $[\alpha]_D$  +39.7°.

Oxidation of 8. Compound 8 (0.025 g) was oxidized with Jones' reagent. The product was recrystallized from petrol-CHCl<sub>3</sub> to give long needles (0.017 g), mp 287–289°, identical with 9.

Synthesis of 8 from acetyl oleanolic acid. Acetyl oleanolic acid (0.05 g) was treated with m-chloroperbenzoic acid (0.05 g) in CHCl<sub>3</sub> (50 ml) at 0° for 20 hr. The product was recrystallized from CHCl<sub>3</sub> to give plates (0.02 g), mp 284–286°, identical with 8.

Acid isomerization of 7. Compound 7 (0.025 g) was treated with conc H<sub>2</sub>SO<sub>4</sub> (1 ml) in EtOH (25 ml) at room temp. for 12 hr. The product was purified by PLC to give needles (0.01 g), mp 287-289° (from petrol-CHCl<sub>3</sub>), identical with 8.

Acidic compounds from stems. Stems, after extraction with petrol, were extracted with 95% EtOH and the methylated acid mixture (8 g) was obtained as for the leaves. Chromatography of this on Al<sub>2</sub>O<sub>3</sub> (170 g), afforded in the petrol fractions, prisms (0.04 g), mp 166–168° (from petrol),  $[\alpha]_D + 37.0^\circ$ ; M<sup>+</sup> 468;  $\nu_{\text{max}}$  (cm<sup>-1</sup>): 1720 (C=O), 1740, 1160 (COOMe), 3080, 1650, 880 (C=CH<sub>2</sub>), identical with a sample of methyl betulinate prepared by oxidation of methyl betulinate with Jones' reagent. Elution with petrol— $C_6H_6$  yielded methyl betulinate (0.1 g) and then methyl oleanolate (0.03 g), mp 198–201° (from  $C_6H_6$ ); M<sup>+</sup> 470;  $\nu_{\text{max}}$  (cm<sup>-1</sup>): 3380 (OH), 1730, 1160 (COOMe), 3030, 1650, 850 (C=CH).

Acknowledgements—We thank Dr. H. T. Cheung, Pharmacy Department, University of Sydney, for an authentic sample of methyl aliphitolate diacetate, Professor I. Yosioka, Faculty of Pharmaceutical Sciences, Osaka University, for samples of  $3\beta$ -acetoxy- $12\alpha$ -hydroxy- and  $11\alpha$ ,  $12\alpha$ -epoxyoleanan-28,  $13\beta$ -olides, and the Committee on Higher Degrees and Research Grants, University of Hong Kong, for financial assistance.

#### REFERENCES

- Hui, W.-H., Li, M.-M. and Luk, K. (1975) Phytochemistry 14, 833.
- Davison, W. H. T. and Bates, G. R. (1953) J. Chem. Soc. 2607.
- Estrada H. et al. (1962) Biol. Inst. Quim. Univ. Mexico 14, 19; Yamagudri K. (1970) Spectral Data of Natural Products, Vol. 1, p. 160. Elsevier, Amsterdam.
- 4. Ageta, H. and Iwata, K. (1966) Tetrahedron Letters 6069.
- Murata, T., Imai, S., Imanishi, M., Goto, M. and Morita, K. (1965) Tetrahedron Letters 3215.
- Barton, D. H. R. and Holness, N. J. (1952) J. Chem. Soc. 78.
- Kitagawa, I., Kitagawa, K. and Yosioka, I. (1972) Tetrahedron 28, 907.